Mixed Reality Synthetic Data Generation

Grace Su'!, Khiem Vuong?, N. Dinesh Reddy?, Srinivasa Narasimhan?

Abstract— Synthetic data generation augments existing vision
datasets and consequently helps train more robust computer
vision models. However, synthetic image generation techniques
proposed by prior works still face limitations in generating
photorealistic data, maintaining low computation costs, and
granting fine control over scene generation parameters. In
particular, synthetic data generation would be especially useful
for training deep learning models for traffic analysis tasks.
Therefore, we propose a photorealistic synthetic road scene
generation method that inserts rendered 3D objects into a
real 2D photo. We first estimate the ground plane equation,
camera parameters, possible vehicle trajectories, and environ-
ment illumination map from the road scene photo. Then, these
scene parameters are used to render the 3D objects in a
physically-based renderer. Finally, we compose the rendered
object smoothly into the road scene. Simultaneously, the ren-
derer can generate precise depth maps. Our “mixed reality”
approach’s results are higher resolution and more photorealistic
compared to similar previous works while addressing their limi-
tations. Thus, our approach can generate high quality synthetic
images and ground truth labels for a variety of computer
vision tasks. In future work, we plan to evaluate whether
our synthetic data and ground truth labels can improve deep
neural network performance on challenging tasks like amodal
segmentation. Code for the road scene generation method is
available at https://github.com/graceduansu/mixed_
reality_ synthetic_data_generation.

Index Terms—Deep Learning, Visual Perception, Object
Detection, Segmentation and Categorization, Computer Vision
for Automation, Synthetic Data Generation

I. INTRODUCTION

One of the most ubiquitous challenges in developing
computer vision models is obtaining realistic, accurately-
labeled, diverse, and large computer vision datasets. Firstly,
it is difficult, time-consuming, and expensive to acquire and
label real-world data. Secondly, real-world image data is
often characterized by a long tail distribution, where only
a minority of different scenarios comprise the majority of
collected images. This means the dataset may not encompass
the full range of possible nuances and variations in each
image. Synthetic data generation addresses these issues by
automatically computing new images that imitate the data
distributions found in existing images of the real world. The
process also allows users to configure and quickly generate
more diverse scenarios that are difficult to obtain from the
real world while obtaining high-accuracy ground truth labels.
Then, the synthetic images can augment existing datasets
and consequently train more robust computer vision models.

1 Grace Su is with the Computer Science Department, Columbia Uni-
versity, New York, NY., USA. g.su@columbia.edu

2 Khiem Vuong, N. Dinesh Reddy, and Srinivasa Narasimhan are with
the Robotics Institute, Carnegie Mellon University, Pittsburgh, PA., USA.
{kvuong, dnarapur, srinivas}@andrew.cmu.edu

For instance, creating object segmentation datasets often
requires a time-consuming process where human annotators
must select the regions of pixels for each segmentation mask
by hand. However, if a synthetic image is generated by
a computer, the ground-truth, pixel-accurate segmentation
masks for each object can also be easily accessed during
the generation process. Thus, a method that generates image
data that is highly faithful to real image data could be useful
for improving the training of many different computer vision
tasks.

Additionally, when curating a computer vision dataset, we
cannot rely on fully real image data because the images
must be labeled by humans and humans cannot consistently
produce pixel-accurate annotations. On the other hand, we
cannot use fully synthetic images because machine learning
models trained on such images will encounter significant
domain adaptation problems (the sim-to-real gap) when they
are tested on real-world images. Therefore, a “mixed reality”
dataset that combines elements of real-world and synthetic
image data would balance the advantages and drawbacks of
both sources.

In the current literature, a number of works have generated
synthetic object segmentation datasets by inserting 3D ren-
dered objects into real-world scenes, but few attempt to take
advantage of the 3D ground-truth information to generate
labels for other vision tasks. In particular, synthetic data
and 3D ground truth label generation would be especially
valuable for vision tasks that predict 3D world information
from 2D image data. One such application area is training
deep learning models for traffic analysis tasks since it is
important to obtain accurate data annotations and predict rare
traffic patterns.

In this paper, we begin to investigate whether a mixed
reality method can generate synthetic, realistic road scenes
and facilitate the training of computer vision models. We
chose to focus on road scene generation in order to assist
training of traffic analysis-related computer vision tasks like
object segmentation, 3D pose estimation, object tracking,
anomaly detection, etc. Section II gives background infor-
mation and reviews previous work related to synthetic image
data generation, including 2D image composition, neural
rendering techniques, and 3D object insertion. Section III
discusses the proposed 3D object insertion and composition
automated pipeline. Section IV presents and evaluates our
object insertion results. Section V concludes the paper,
describes potential applications, and outlines future work.

https://github.com/graceduansu/mixed_reality_synthetic_data_generation
https://github.com/graceduansu/mixed_reality_synthetic_data_generation

II. RELATED WORK
A. 2D Image Composition

2D image composition methods typically “cut and paste”
new objects onto desired background images, then blend
the new objects into the background to make the resulting
composite image look more realistic. Because this image
generation method cuts and pastes images of real objects,
it is closer to using fully real image data. This technique
is also relatively simple and thus easier to scale. But as [1]
describes, the resulting composite images are frequently un-
realistic because of “appearance inconsistency (e.g., incom-
patible illumination), geometry inconsistency (e.g., unrea-
sonable size), and semantic inconsistency (e.g., mismatched
semantic context).” Many works address these issues by
training neural networks, especially GANs (generative ad-
versarial networks), to adjust for these inconsistencies. For
instance, [2] enables object and texture editing by training
a GAN to replace and blend objects. [3] also uses GAN-
based models to remove and insert objects and their shadows.
However, neural networks trained to blend “pasted” objects
still struggle to produce consistent, photorealistic results.
The networks do not always learn and apply all physical
rules of photos like how perspective affects perceived object
size, how occluding objects cast shadows, etc. Additionally,
2D image composition methods have no way to access 3D
ground-truth information or generate such data annotations.

B. Neural Rendering Techniques

Neural rendering techniques train neural networks to learn
a scene’s neural radiance field (NeRF) representation and
therefore produce novel views of the scene. These ap-
proaches can achieve photorealistic results by representing
scenes using implicit fields of volume density and view-
dependent color. Many neural rendering techniques also
encode the entire scene as a whole. To ensure that the NeRF
representation allows for object-level editing, [4] designs an
architecture that encodes individual object information. [5]
also learns object-level representations by proposing a neural
rendering approach that observes a scene video, then decom-
poses the scene into scene graphs. These works show that
NeRFs can be extended to learn object-level representations
and enable object manipulation. However, there still exist
several cons of using NeRFs for novel view synthesis:

« Low-interpretability and editability for dataset parame-
ter control

o An inherent lack of 3D ground-truth information

o Higher computation costs when learning the NeRF

C. 3D Object Insertion

To generate a high-fidelity image dataset, it is advanta-
geous to render and insert 3D, physically accurate models of
objects into existing real-world backgrounds. Then, the ren-
dering process computes the correct scene geometry, reflec-
tions, based on user-selected scene parameters, and outputs
realistic images. Thus, 3D object insertion is a mixed reality
approach. For example, [6] uses Blender’s Cycles renderer

and post-processing workflow to photorealistically render
and insert 3D cars. Their results suggest that object detection
and instance segmentation models trained on augmented
imagery generalize better than those only trained on synthetic
data or those trained on limited amounts of annotated real
data. Realism of the background image also significantly
affects performance. However, while their pipeline estimates
the road plane and camera pose for each background image,
they only use background images captured by driving cars.
This means that they do not use other viewpoints like those
from traffic cameras. They use a fixed set of 3D car models,
locations, and environment maps to augment real street
scene datasets. Their synthetic dataset and code are also not
released. In addition, they only evaluate their dataset on 2D
tasks (segmentation and detection) and lack benchmarks for
3D vision tasks.

Recently, Chen et al. [7] further leverages available real
world data by inserting objects that were viewed with similar
viewpoints and distance to the camera in its original footage.
Then, they reconstruct observed objects as 3D assets and
warp them to the novel target view using a differentiable
neural renderer. Finally, they train a generative image in-
painting synthesis network to do post-composition. When
using their method for data augmentation, there are small im-
provements on semantic segementation performance. How-
ever, their augmentation method only uses a single cloudy
environment map and does not perform lighting estimation.
Their synthetic dataset and code are also not released.

On the other hand, inverse rendering and lighting es-
timation allows one to obtain a desired background im-
age’s scene appearance parameters that can then be used
to render inserted objects with the correct lighting and
geometry. For example, [8] uses a deep neural network to
achieve single-image inverse rendering of indoor scenes.
The network simultaneously estimates the scene’s depths,
normals, spatially-varying albedo, roughness and lighting,
thus enabling photorealistic material editing, object insertion,
and rendering. However, the estimations for depths, normals,
albedo, etc. are not as accurate for outdoor scenes because
there is a lack of ground-truth lighting data for outdoor
viewpoints.

Overall, current works in 3D object insertion for data aug-
mentation demonstrate small improvements for traditional
object segmentation and detection tasks, but do not evaluate
3D object insertion for other vision tasks that requires
accurate 3D ground-truth information.

III. METHODS

After reviewing related work in synthetic image data
generation, we chose to design a 3D object insertion-based
approach for road scene generation. We first obtain the
desired background image’s scene appearance parameters:
the road plane equation, vehicle trajectories, intrinsic and
extrinsic camera parameters, and sun direction. Next, we
use physics-based rendering to render 3D vehicle models
with the obtained scene parameters. We also produce the
corresponding, unoccluded depth maps for each vehicle.

/ Input: \

Scene parameters

/ Rendering \

Sun & sky lighting

~

Image
composition

Cops image

Car trajectories

Camera parameters

S =/ h /

Depth map

. /

Fig. 1: Our proposed synthetic scene generation method

Finally, we composite the rendered cars onto the desired
background using pixel-wise computations as described in
[8]. Our synthetic scene generation method is illustrated in
Fig. 1.

A. Incorporating Scene Geometry

To incorporate the desired background image’s scene
geometry into our vehicle renderings, we obtain the road
plane equation, possible vehicle trajectories (Fig. 2), and
intrinsic and extrinsic parameters of the camera that captured
the desired background image. Note that our estimated scene
geometry is in metric scale, thus allowing physically accurate
renderings of objects.

Given the camera’s GPS location, we leverage Google
Street View (GSV) [9] to build the scene’s geometry at that
location. GSV is a street-level imagery database and a rich
source of millions of panorama images with wide coverage
all over the world. Every panorama image is geo-tagged with
accurate GPS coordinates, capturing 360° horizontal and
180° vertical field-of-view with high resolution. We sample
multiple panoramas around the desired camera’s location
inside a radius of 40 meters and use structure-from-motion
(SfM) [10] to reconstruct the scene. Note that we also
geo-registered the up-fo-scale STM reconstruction using the
provided GPS coordinates of the GSV panoramas. Thus, our
final 3D reconstruction of the scene is in metric scale.

To obtain the camera’s intrinsic and extrinsic parameters,
we follow the typical visual localization pipeline by localiz-
ing the desired background image (i.e., query image) w.r.t.
the 3D reconstruction built with GSV images (i.e., database
images). To establish robust 2D-3D correspondences, we
follow hloc [11] by using learned feature matching method
SuperGlue [12] with SuperPoint [13] features descriptors to
match the query image with the database images. Given the

2D-3D correspondences, we perform a bundle adjustment
step to retrieve the camera intrinsic and its 6DoF extrinsic
parameters. Note that the large number of accurate matches
between the query image and the rich GSV database im-
ages, produced by SuperPoint and SuperGlue, allows us to
robustly recover both intrinsic and extrinsics parameters of
the camera.

The road plane equation is estimated by fitting a plane to
the set of 3D points whose 2D pixel locations are lying on
the road obtained from off-the-shelf semantic segmentation
method [14]. The possible vehicle trajectories are estimated
from the real data by tracking multiple vehicles during a long
period of time in 2D, which is then lifted to 3D using the
road plane estimated above. We then perform spline-fitting
followed by hierarchical clustering [15], where the average
direction of each cluster is considered a possible vehicle
trajectory. Additionally, when placing each 3D vehicle model
into the scene along the vehicle trajectories, we employ
collision checking between all models’ 3D bounding boxes
to ensure no models intersect each other in an unrealistic
manner.

By incorporating the physically accurate scene geometry,
as long as the inserted objects have correct metric scale, we
are able to render geometrically accurate, scale-consistent
road scenes (Fig. 3) and avoid inconsistencies such as
unreasonable object sizes, incorrect distortions, or occlusions
in our generated road scenes.

B. Lighting Estimation

We also estimate the environment map of the desired
background image. After obtaining the time, date, and GPS
coordinates for when and where the road scene photo was
captured, our rendering software, Mitsuba [16], computes the
sun’s direction and generates environment map using sun

Fig. 2: All possible vehicle trajectories for this example road
scene photo are visualized on the left. An illustration of one
possible vehicle trajectory is generated on the right.

Fig. 3: Demonstration of our method’s geometry, perspective,
and size consistency as a result of using an estimated road
plane equation and camera parameters. The same car model
has been rendered and inserted at constantly increasing
distances from the camera.

and sky illumination models. To avoid modeling the sun as
a point light source and ensure that specular reflections are
appropriately sized, we set Mitsuba’s sun radius parameter
to 5.

C. Physically-Based Rendering

We chose to render 3D objects using Mitsuba 0.5.0 [16]
because it accurately models the physics of light scattering
and can easily provide the corresponding, high resolution,
ground truth rendering data such as depth maps, albedo maps,
surface normals, and 3D coordinates in the world space.
Other physically-based renderers also exist [8], [17], [18].
While these renderers are optimized and GPU-accelerated to
be much faster than Mitsuba 0.5.0, their drawbacks include
not being open-source, requiring RTX GPUs, and/or lacking
crucial options that Mitsuba 0.5.0 provides. The specific
options we require for our method’s current implementation
are the sun and sky illumination modeling plugin and the
option to hide directly visible emitters.

Another vital part of physically-based rendering is incor-
porating the appropriate surface-scattering models for each
type of material present in the scene. To achieve this, we

Material Names Mitsuba Surface Scattering Models

“glass”, “windshield” Thin dielectric material

“plastic”, “headlight”, “indicator” Smooth plastic material

“car body”, “chrome”, “metal”, “silver” | Rough conductor material with Smooth

dielectric coating

“tire”, “rubber”, “wheel” Rough diffuse material

“interior” Modified phong BRDF

Fig. 4: A summary of our material mapping rules. For each
material name, we search the name for keywords and related
substrings (left column), then match it to the appropriate
Mitsuba surface scattering model (right column).

first curate a set of 11 high quality 3D vehicle models
covering 5 categories (SUV, sedan, mini-van, van, pickup
truck). Each 3D models must have a high polygon count and
meaningful material names in its material file. Then, based
on the material names, we can map each of the material
definitions to the appropriate Mitsuba BRDF (bidirectional
reflectance distribution function) surface scattering model.
Our material mapping rules are summarized in Fig. 4.

D. Image Composition

We use an image composition method described in [8] to
insert the 3D objects while blending their shadows into the
background image. We render the following images for each
road scene to obtain the necessary images for final image
composition and depth maps:

o I, Road plane and 3D car models

e Iop;: 3D car models only

e I,;: Road plane only

« Individual depth map for each 3D car model

All images are rendered with Mitsuba’s options to hide
directly visible emitters (in our case, the environment map)
and enable the image’s alpha channel. Then, the masks M,
and M,y for I,;; and M, ;, respectively, are easily obtained.

To remove potential pixel artifacts on object and plane
edges, we erode the boundaries of regions of foreground
pixels. Next, we calculate the edges, or contours, of the
object mask Mp; and apply Gaussian blurring. Then, we
alpha blend the blurred contours with the original contours.

Finally, to compute the new, composited image I,,¢q,, We
calculate the pixel values in the object region by pixel-wise
multiplication (indicated by ©®):

Inew © Mobj =lan © Mobj (D

For the pixel values in the plane region:
Tou

Inew © (May — Moy;) =10 T, O (May — Moy;) (2)
P
IV. RESULTS

We present image examples of results produced from our
synthetic road scene generation method (Fig. 5, Fig. 0).

Note in each generated result, the rendered cars respect
the scene lighting and geometry while exhibiting physically
accurate reflections. Additionally, there are very few visible
differences between the synthetic images and real world
photos.

Fig. 5: An image example produced using our augmented
reality-based data generation method. All cars in the image
were rendered and inserted.

Fig. 6: An example of a real traffic camera photo, with one
rendered vehicle inserted for comparison (the black SUV
second from the bottom of the image)

For our rendering settings, we chose a volumetric path
tracer in order to handle the relatively glossy car materials.
We chose to render 1000 x 750 images at a sample count of
32 with a maximum path depth of 4 to balance the tradeoff
between higher quality results and longer rendering times. In
addition, we decided to render a random number between 10
and 20 vehicles, inclusive, to provide many vehicle examples
in one image while maintaining reasonable rendering times.

Using these settings, we found that on one machine with
16 CPU cores, the rendering times for a single scene roughly

vary between 200 and 400 seconds, with times largely being
determined by the number of vehicles in the image. However,
because one Mitsuba process will use at most 2GB of RAM
for our method, multiple dataset generation and rendering
processes can be launched simultaneously to produce a large
synthetic image dataset.

V. CONCLUSION AND FUTURE WORK

The results demonstrate that our augmented reality-based
method for synthetic road scene generation produces more
photorealistic results compared to previous 3D object in-
sertion works. Additionally, the results suggest that our
approach can be readily used to generate road scene images
and precise ground truth labels for computer vision tasks
like object segmentation, construction zone detection, object
tracking, 3D pose estimation, and more.

In future work, we plan to evaluate whether our synthetic
data and precise depth maps (Fig. 7) improve training and
performance of amodal segmentation models, which aim to
predict the object’s full segmentation mask despite visual
occlusions [19]. We also plan to generate sets of traffic scenes
that contain rare objects (Fig. 8) and object configurations
(Fig. 9). We will evaluate whether adding these scenes helps
improve object detection training and robustness.

Overall, these steps will allow us to discover how syn-
thetic data generation can potentially augment existing vision
datasets and train more robust computer vision models.

Fig. 7: We can compute the unoccluded segmentation masks
from our output depth map and use them to train amodal
segmentation models.

Fig. 8: Examples of rare objects: ambulance, firetruck, con-
struction vehicle

Fig. 9: Example of a rare object configuration: Anomalous
traffic pattern

ACKNOWLEDGMENT

This material is based upon work supported in parts by
the National Science Foundation under Grants CCF-1730147
and CNS-2038612, and the Columbia University Egleston
Scholars Program Stipend. Special thanks to the CMU
Illumination and Imaging Lab and the Robotics Institute
Summer Scholars program for their mentorship and support.

REFERENCES

[1] L. Niu, W. Cong, L. Liu, Y. Hong, B. Zhang, J. Liang,
and L. Zhang, “Making images real again: A comprehensive
survey on deep image composition,” 2021. [Online]. Available:
https://arxiv.org/abs/2106.14490

[2] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with con-
ditional gans,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

[3] Y. Wang, A. Liu, R. Tucker, J. Wu, B. L. Curless, S. M. Seitz, and
N. Snavely, “Repopulating street scenes,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[4] B. Yang, Y. Zhang, Y. Xu, Y. Li, H. Zhou, H. Bao, G. Zhang,
and Z. Cui, “Learning object-compositional neural radiance field for
editable scene rendering,” in International Conference on Computer
Vision (ICCV), October 2021.

[5] J. Ost, F. Mannan, N. Thuerey, J. Knodt, and F. Heide, “Neural
scene graphs for dynamic scenes,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2021, pp. 2856-2865.

[6] H. Abu Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, and
C. Rother, “Augmented reality meets computer vision: Efficient
data generation for urban driving scenes,” Int. J. Comput. Vision,
vol. 126, no. 9, p. 961-972, September 2018. [Online]. Available:
https://doi.org/10.1007/s11263-018-1070-x

[71 Y. Chen, F. Rong, S. Duggal, S. Wang, X. Yan, S. Manivasagam,
S. Xue, E. Yumer, and R. Urtasun, “Geosim: Realistic video simulation
via geometry-aware composition for self-driving,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2021, pp. 7230-7240.

[8] Z.Li, M. Shafiei, R. Ramamoorthi, K. Sunkavalli, and M. Chandraker,
“Inverse rendering for complex indoor scenes: Shape, spatially-varying
lighting and svbrdf from a single image,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 2475-2484.

[9] Google, “Google Street View,” https://www.google.com/streetview/.

[10]

(1]

[12]

[13]

[14]

[15]

[16]
(17]

[18]

[19]

J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

P-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, “From coarse
to fine: Robust hierarchical localization at large scale,” in CVPR, 2019.
P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Su-
perglue: Learning feature matching with graph neural networks,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 4938-4947.

D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-
supervised interest point detection and description,” in Proceedings
of the IEEE conference on computer vision and pattern recognition
workshops, 2018, pp. 224-236.

B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar,
“Masked-attention mask transformer for universal image segmenta-
tion,” 2022.

F. Li, N. D. Reddy, X. Chen, and S. G. Narasimhan, “Traffic4d:
Single view reconstruction of repetitious activity using longitudinal
self-supervision,” in 2021 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2021, pp. 1385-1392.

W. Jakob, “Mitsuba renderer,” 2010, http://www.mitsuba-renderer.org.
“Marmoset Toolbag 4 - 3D Rendering, Texturing, & Baking Tools.”
[Online]. Available: https://marmoset.co/toolbag/

“Omniverse Platform for Virtual Collaboration.” [Online]. Available:
https://www.nvidia.com/en-us/omniverse/

N. D. Reddy, R. Tamburo, and S. G. Narasimhan, “Walt: Watch
and learn 2d amodal representation from time-lapse imagery,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2022, pp. 9356-9366.

https://arxiv.org/abs/2106.14490
https://doi.org/10.1007/s11263-018-1070-x
https://marmoset.co/toolbag/
https://www.nvidia.com/en-us/omniverse/

